Acta Crystallographica Section C
Crystal Structure
Communications
ISSN 0108-2701

p-Decylphenyl isocyanide and p-decylbenzonitrile: isomorphous isonitrile/nitrile isomers

Doyle Britton,* John R. Sowa Jr and Kent R. Mann

Department of Chemistry, University of Minnesota, Minneapolis, MN 55455-0431, USA
Correspondence e-mail: britton@chem.umn.edu

Received 12 February 2004
Accepted 7 April 2004
Online 22 May 2004
p-Decylphenyl isocyanide, $p-\mathrm{C}_{10} \mathrm{H}_{21}-\mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{NC}$ or $\mathrm{C}_{17} \mathrm{H}_{25} \mathrm{~N}$, and p-decylbenzonitrile, $p-\mathrm{C}_{10} \mathrm{H}_{21}-\mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{CN}$ or $\mathrm{C}_{17} \mathrm{H}_{25} \mathrm{~N}$, are isomorphous. The molecules lie in mirror planes, with the C_{6} rings perpendicular to the mirror. The packing of both molecules includes an aliphatic region, with close to ideal packing of the $\mathrm{C}_{10} \mathrm{H}_{21}$ chains, and an aromatic region, with phenyl ring- CN interactions. In addition, the CN ends of the molecules are also involved in a $\mathrm{CN} \cdots \mathrm{NC}$ dipolar interaction.

Comment

In the course of a study of the structures and properties of a series of $\left[\mathrm{Pt}(\text { arylisonitrile })_{4}\right]\left[\mathrm{Pt}(\mathrm{CN})_{4}\right]$ compounds (Daws et al., 1997), it was felt useful to determine the structure of one of the aryl isonitrile ligands, namely p-decylphenyl isocyanide, (I); this structure is reported here. Corresponding nitriles and isocyanides sometimes have different packing arrangements, even though the pairs of molecules are very closely isosteric (Pink et al., 2000, and references therein). In view of this fact, it also seemed worthwhile to determine the structure of p-decylbenzonitrile, (II).

(II)

The two compounds are isomorphous. The anisotropic displacement ellipsoids and atom labelling are shown in Fig. 1. The bond lengths and angles in the two molecules agree within experimental error. The $\mathrm{C} 3-\mathrm{N} 2$ and $\mathrm{N} 2-\mathrm{C} 1$ distances in (I) are 1.407 (2) and 1.162 (2) \AA, respectively, and the corresponding distances in (II), C3-C2 and C2-N1, are 1.446 (3) and 1.153 (3) \AA, respectively.

Figure 1
The molecules of (I) (top) and (II). Displacement ellipsoids are shown at the 50% probability level.

There are three major components to the packing, viz. the interactions of the aliphatic portions, the π interactions of the aromatic portions, and the dipolar interactions of the nitrile and isonitrile groups (see Fig. 2 for two orthogonal views of the packing).

The aliphatic $\mathrm{C}_{10} \mathrm{H}_{21}$ fragments pack parallel to each other, forming a two-dimensional layer containing hexagonal closepacked rods. This arrangement is similar to that found in n-decane (Bond \& Davies, 2002). While the packing in n-decane is not identical to that in either of the CN compounds, since the planar C_{10} groups are oriented differently to one another in the two basically different structures, the cross-sectional areas of the rods in the CN compounds [18.26 (2) \AA^{2} for -NC and $18.25(2) \AA^{2}$ for -CN] are only

Figure 2
The packing of (I); that of (II) is essentially the same. Left: view along a; right: view along b.

Figure 3
A view normal to the plane of the C_{6} ring in the molecule of (I). Only atoms C 7 in the decyl side chains are shown.
slightly larger than that in n-decane $\left[17.94\right.$ (2) $\left.\AA^{2}\right]$, indicating that this aspect of the packing is only slightly affected by the terminal groups.

The overlap of the aromatic fragments is shown in Fig. 3. There is no overlap between the rings, but the -CN and -NC groups lie directly over the ring in the next layer. The perpendicular distances in (I) are 3.467 (1) (between rings), 3.474 (2) (between atoms N2) and 3.494 (2) \AA (between atoms C1). The distances in (II) are 3.474 (2) (ring), 3.506 (4) (C2) and 3.552 (3) $\AA(\mathrm{N} 1)$. In each case, the -NC or -CN group is bent slightly out of the plane of the ring and away from the ring in the next molecule.

There are two pairs of dipolar interactions between each -NC or -CN group and its neighbors. One pair is attractive, involving groups related across a center of symmetry. In these interactions, the perpendicular distance between the parallel groups is 4.052 (2) \AA for (I) and 4.055 (3) \AA for (II). The dipoles are slightly displaced along the $\mathrm{C}-\mathrm{N}$ bond direction from the positions of maximum attraction, assuming equal and opposite charges localized on the C and N atoms; the displacement is 0.149 (2) \AA for (I) and 0.184 (3) \AA for (II). The other pair of interactions is repulsive, involving groups related by translation along the a direction. In these interactions, the perpendicular distances between the parallel groups are shorter, viz. 3.525 (2) \AA for (I) and 3.557 (3) \AA for (II). However, the dipoles are considerably displaced along the $\mathrm{C}-\mathrm{N}$ bond direction from the positions of maximum repulsion; the displacements are 3.054 (2) \AA for (I) and 3.017 (3) \AA for (II). The net result is that, for this simple model, the magnitude of the attractive interaction is about three times that of the repulsive interaction.

Experimental

The preparation of (I) has been reported previously (Daws et al., 1997). Crystals suitable for diffraction were prepared by recrystallization from ethanol. Compound (II) was obtained according to the method of Casanova et al. (1966). A 0.23 g sample of neat $p-\mathrm{C}_{10} \mathrm{H}_{21}-$ $\mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{NC}$ was heated to 473 K for 24 h under an argon atmosphere. After cooling overnight, the IR spectrum showed a single band at $2232.5 \mathrm{~cm}^{-1}$ due to the nitrile stretch. No isocyanide was present. The crude nitrile was purified by chromatography on silica gel using a 1:20 mixture of ethyl acetate and hexanes. Recrystallization from a variety of solvents gave crystals inferior to those of (I). The crystals used for the X-ray structure determination were obtained from acetone.

Compound (I)

Crystal data

$\mathrm{C}_{17} \mathrm{H}_{25} \mathrm{~N}$
$M_{r}=243.38$
Monoclinic, $P 2_{1 / m} / m$
$a=4.6642$ (12) £
$b=7.831(2) \AA$
$c=20.607(5) \AA$
$\beta=91.13$ (1) ${ }^{\circ}$
$V=752.5(3) \AA^{3}$
$Z=2$

Data collection

Siemens SMART area-detector
diffractometer
ω scans
Absorption correction: multi-scan
(SADABS; Sheldrick, 2002;
Blessing, 1995)
$T_{\text {min }}=0.83, T_{\text {max }}=0.99$
6459 measured reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.038$
$w R\left(F^{2}\right)=0.106$
$S=1.04$
1827 reflections
154 parameters
All H-atom parameters refined

Compound (II)

Crystal data

$\mathrm{C}_{17} \mathrm{H}_{25} \mathrm{~N}$
$M_{r}=243.38$
Monoclinic, $P 2_{1} / m$
$a=4.6526$ (12) A
$b=7.801(2) \AA$
$c=20.466(5) \AA$
$\beta=90.50(1)^{\circ}$
$V=742.8(3) \AA^{3}$
$Z=2$

Data collection

Siemens SMART area-detector diffractometer

ω scans

8715 measured reflections
1812 independent reflections
918 reflections with $I>2 \sigma(I)$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.046$
$w R\left(F^{2}\right)=0.107$
$S=0.74$
1812 reflections
104 parameters
H -atom parameters constrained
$D_{x}=1.074 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 985
reflections
$\theta=2.6-27.4^{\circ}$
$\mu=0.06 \mathrm{~mm}^{-1}$
$T=173$ (2) K
Plate, colorless
$0.50 \times 0.25 \times 0.10 \mathrm{~mm}$

1827 independent reflections
1190 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.024$
$\theta_{\text {max }}=27.5^{\circ}$
$h=-6 \rightarrow 6$
$k=-10 \rightarrow 10$
$l=-26 \rightarrow 26$

$$
\begin{aligned}
& w=1 /[\sigma^{2}\left(F_{o}^{2}\right)+(0.054 P)^{2} \\
&+0.023 P] \\
& \text { where } \mathrm{P}=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3^{\prime} \\
&(\Delta / \sigma)_{\max }=0.001 \\
& \Delta \rho_{\max }=0.17 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.18 \mathrm{e} \AA^{-3}
\end{aligned}
$$

$$
\begin{aligned}
& D_{x}=1.088 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo } K \alpha \text { radiation } \\
& \text { Cell parameters from } 1019 \\
& \quad \text { reflections } \\
& \theta=2.8-24.5^{\circ} \\
& \mu=0.06 \mathrm{~mm}^{-1} \\
& T=173(2) \mathrm{K} \\
& \text { Plate, colorless } \\
& 0.40 \times 0.20 \times 0.07 \mathrm{~mm}
\end{aligned}
$$

$R_{\text {int }}=0.070$
$\theta_{\text {max }}=27.5^{\circ}$
$h=-6 \rightarrow 6$
$k=-10 \rightarrow 10$
$l=-26 \rightarrow 26$

For (I), the positions and isotropic displacement parameters for all of the H atoms were refined. For (II), given the lower quality of the data, the H atoms were placed in idealized positions, with $\mathrm{C}-\mathrm{H}$ distances of $0.95 \AA$ for the aromatic H atoms, $0.99 \AA$ for the $\mathrm{CH}_{2} \mathrm{H}$ atoms and $0.98 \AA$ for the $\mathrm{CH}_{3} \mathrm{H}$ atoms. The $U_{\text {iso }}$ values were set at $1.2 U_{\text {eq }}$ of the attached C atoms for the aromatic and $\mathrm{CH}_{2} \mathrm{H}$ atoms, and at $1.5 U_{\text {eq }}$ for the $\mathrm{CH}_{3} \mathrm{H}$ atoms.

For both p-decylphenyl isocyanide, (I), and p-decylbenzonitrile, (II), data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 1997); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: FR1469). Services for accessing these data are described at the back of the journal.

References

Blessing, R. H. (1995). Acta Cryst. A51, 33-38.
Bond, A. D. \& Davies, J. E. (2002). Acta Cryst. E58, o196-o197.
Bruker (2002). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
Casanova, J., Werner, N. D. \& Schuster, R. E. (1966). J. Org. Chem. 31, 34733482.

Daws, C. A., Exstrom, C. L., Sowa, J. R. Jr \& Mann, K. R. (1997). Chem. Mater. 9, 363-368.
Pink, M., Britton, D., Noland, W. E. \& Pinnow, M. J. (2000). Acta Cryst. C56, 1271-1273.
Sheldrick, G. M. (1997). SHELXTL. Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA.
Sheldrick, G. M. (2002). SADABS. University of Göttingen, Germany.

